3.4 \(\int \tan ^2(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx\)

Optimal. Leaf size=676 \[ \frac {\sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \tan ^{-1}\left (\frac {b \sqrt {a^2-2 a c+b^2+c^2}-\left (-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2\right ) \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}+\frac {\sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \tanh ^{-1}\left (\frac {\left (-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2\right ) \tan (d+e x)+b \sqrt {a^2-2 a c+b^2+c^2}}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}-\frac {\left (b^2-4 c (a-2 c)\right ) \tanh ^{-1}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 c^{3/2} e}+\frac {(b+2 c \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 c e} \]

[Out]

-1/8*(b^2-4*(a-2*c)*c)*arctanh(1/2*(b+2*c*tan(e*x+d))/c^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))/c^(3/2)/e
+1/2*arctan(1/2*(b*(a^2-2*a*c+b^2+c^2)^(1/2)-(a^2+b^2+c*(c-(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c-(a^2-2*a*c+b^2+c^
2)^(1/2)))*tan(e*x+d))/(a^2-2*a*c+b^2+c^2)^(1/4)*2^(1/2)/(a^2+b^2+c*(c-(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c-(a^2-
2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))*(a^2+b^2+c*(c-(a^2-2*a*c+b^2+c^2)^(1/2))-a
*(2*c-(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e*2^(1/2)+1/2*arctanh(1/2*(b*(a^2-2*a*c+b^2+
c^2)^(1/2)+(a^2+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))*tan(e*x+d))/(a^2-2*a*c+
b^2+c^2)^(1/4)*2^(1/2)/(a^2+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a+b*
tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))*(a^2+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))^
(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e*2^(1/2)+1/4*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)*(b+2*c*tan(e*x+d))/c/e

________________________________________________________________________________________

Rubi [A]  time = 26.57, antiderivative size = 676, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {3700, 1071, 1078, 621, 206, 1036, 1030, 208, 205} \[ \frac {\sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \tan ^{-1}\left (\frac {b \sqrt {a^2-2 a c+b^2+c^2}-\left (-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2\right ) \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}+\frac {\sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \tanh ^{-1}\left (\frac {\left (-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2\right ) \tan (d+e x)+b \sqrt {a^2-2 a c+b^2+c^2}}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}-\frac {\left (b^2-4 c (a-2 c)\right ) \tanh ^{-1}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 c^{3/2} e}+\frac {(b+2 c \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 c e} \]

Antiderivative was successfully verified.

[In]

Int[Tan[d + e*x]^2*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]

[Out]

(Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2])]*ArcTan[(b*S
qrt[a^2 + b^2 - 2*a*c + c^2] - (a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 + b^2 -
2*a*c + c^2]))*Tan[d + e*x])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 -
 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2])]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt
[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*e) - ((b^2 - 4*(a - 2*c)*c)*ArcTanh[(b + 2*c*Tan[d + e*x])/(2*Sqrt[c]*Sqrt
[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(8*c^(3/2)*e) + (Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c
^2]) - a*(2*c + Sqrt[a^2 + b^2 - 2*a*c + c^2])]*ArcTanh[(b*Sqrt[a^2 + b^2 - 2*a*c + c^2] + (a^2 + b^2 + c*(c +
 Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b^2 - 2*a*c + c^2]))*Tan[d + e*x])/(Sqrt[2]*(a^2 + b^2 -
 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b^2 - 2*a*c +
 c^2])]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*e) + ((b + 2*c
*Tan[d + e*x])*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])/(4*c*e)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1030

Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[-2*
a*g*h, Subst[Int[1/Simp[2*a^2*g*h*c + a*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; F
reeQ[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]

Rule 1036

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Dist[1/(2*q), Int[Simp[-(a*h*e) - g*(c*d - a*f - q) + (h*(c*d - a*f + q) -
 g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Dist[1/(2*q), Int[Simp[-(a*h*e) - g*(c*d - a*f + q
) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g,
 h}, x] && NeQ[e^2 - 4*d*f, 0] && NegQ[-(a*c)]

Rule 1071

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((A_.) + (C_.)*(x_)^2)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Si
mp[((C*(b*f*p) + 2*c*C*f*(p + q + 1)*x)*(a + b*x + c*x^2)^p*(d + f*x^2)^(q + 1))/(2*c*f^2*(p + q + 1)*(2*p + 2
*q + 3)), x] - Dist[1/(2*c*f^2*(p + q + 1)*(2*p + 2*q + 3)), Int[(a + b*x + c*x^2)^(p - 1)*(d + f*x^2)^q*Simp[
p*(b*d)*(C*(-(b*f))*(q + 1)) + (p + q + 1)*(b^2*C*d*f*p + a*c*(C*(2*d*f) + f*(-2*A*f)*(2*p + 2*q + 3))) + (2*p
*(c*d - a*f)*(C*(-(b*f))*(q + 1)) + (p + q + 1)*(-(b*c*(C*(-4*d*f)*(2*p + q + 2) + f*(2*C*d + 2*A*f)*(2*p + 2*
q + 3)))))*x + (p*(-(b*f))*(C*(-(b*f))*(q + 1)) + (p + q + 1)*(C*f^2*p*(b^2 - 4*a*c) - c^2*(C*(-4*d*f)*(2*p +
q + 2) + f*(2*C*d + 2*A*f)*(2*p + 2*q + 3))))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, A, C, q}, x] && NeQ[b^2
 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p + q + 1, 0] && NeQ[2*p + 2*q + 3, 0] &&  !IGtQ[p, 0] &&  !IGtQ[q, 0]

Rule 1078

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d
+ e*x + f*x^2]), x], x] /; FreeQ[{a, c, d, e, f, A, B, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rule 3700

Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.
) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] :> Dist[f/e, Subst[Int[((x/f)^m*(a + b*x^n + c*x^(2*n))^p)/(f^2 + x^2
), x], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \tan ^2(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^2 \sqrt {a+b x+c x^2}}{1+x^2} \, dx,x,\tan (d+e x)\right )}{e}\\ &=\frac {(b+2 c \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 c e}-\frac {\operatorname {Subst}\left (\int \frac {\frac {1}{4} \left (b^2+4 a c\right )+2 b c x+\frac {1}{4} \left (b^2-4 (a-2 c) c\right ) x^2}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 c e}\\ &=\frac {(b+2 c \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 c e}-\frac {\operatorname {Subst}\left (\int \frac {\frac {1}{4} \left (b^2+4 a c\right )+\frac {1}{4} \left (-b^2+4 (a-2 c) c\right )+2 b c x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 c e}-\frac {\left (b^2-4 (a-2 c) c\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{8 c e}\\ &=\frac {(b+2 c \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 c e}-\frac {\left (b^2-4 (a-2 c) c\right ) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c \tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{4 c e}+\frac {\operatorname {Subst}\left (\int \frac {-2 c \left (a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )-2 b c \sqrt {a^2+b^2-2 a c+c^2} x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{4 c \sqrt {a^2+b^2-2 a c+c^2} e}-\frac {\operatorname {Subst}\left (\int \frac {-2 c \left (a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+2 b c \sqrt {a^2+b^2-2 a c+c^2} x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{4 c \sqrt {a^2+b^2-2 a c+c^2} e}\\ &=-\frac {\left (b^2-4 (a-2 c) c\right ) \tanh ^{-1}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 c^{3/2} e}+\frac {(b+2 c \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 c e}-\frac {\left (2 b c \left (a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{8 b c^2 \sqrt {a^2+b^2-2 a c+c^2} \left (a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac {-2 b c \sqrt {a^2+b^2-2 a c+c^2}+2 c \left (a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) \tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}-\frac {\left (2 b c \left (a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-8 b c^2 \sqrt {a^2+b^2-2 a c+c^2} \left (a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac {2 b c \sqrt {a^2+b^2-2 a c+c^2}+2 c \left (a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) \tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}\\ &=\frac {\sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \tan ^{-1}\left (\frac {b \sqrt {a^2+b^2-2 a c+c^2}-\left (a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac {\left (b^2-4 (a-2 c) c\right ) \tanh ^{-1}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 c^{3/2} e}+\frac {\sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \tanh ^{-1}\left (\frac {b \sqrt {a^2+b^2-2 a c+c^2}+\left (a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}+\frac {(b+2 c \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 c e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.64, size = 405, normalized size = 0.60 \[ \frac {-\frac {\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 c^{3/2}}+\frac {(b+2 c \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 c}+\frac {1}{4} i \left (2 \sqrt {a-i b-c} \tanh ^{-1}\left (\frac {2 a+(b-2 i c) \tan (d+e x)-i b}{2 \sqrt {a-i b-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )-\frac {(b-2 i c) \tanh ^{-1}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {c}}\right )-\frac {1}{4} i \left (2 \sqrt {a+i b-c} \tanh ^{-1}\left (\frac {2 a+(b+2 i c) \tan (d+e x)+i b}{2 \sqrt {a+i b-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )-\frac {(b+2 i c) \tanh ^{-1}\left (\frac {b+2 c \tan (d+e x)}{2 \sqrt {c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {c}}\right )}{e} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Tan[d + e*x]^2*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]

[Out]

(-1/8*((b^2 - 4*a*c)*ArcTanh[(b + 2*c*Tan[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/
c^(3/2) + (I/4)*(2*Sqrt[a - I*b - c]*ArcTanh[(2*a - I*b + (b - (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a - I*b - c]*Sqr
t[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])] - ((b - (2*I)*c)*ArcTanh[(b + 2*c*Tan[d + e*x])/(2*Sqrt[c]*Sqrt[a +
 b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/Sqrt[c]) - (I/4)*(2*Sqrt[a + I*b - c]*ArcTanh[(2*a + I*b + (b + (2*I)*c
)*Tan[d + e*x])/(2*Sqrt[a + I*b - c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])] - ((b + (2*I)*c)*ArcTanh[(b
 + 2*c*Tan[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/Sqrt[c]) + ((b + 2*c*Tan[d + e*
x])*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])/(4*c))/e

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)*tan(e*x+d)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)*tan(e*x+d)^2,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.95, size = 17246975, normalized size = 25513.28 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)*tan(e*x+d)^2,x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {c \tan \left (e x + d\right )^{2} + b \tan \left (e x + d\right ) + a} \tan \left (e x + d\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)*tan(e*x+d)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c*tan(e*x + d)^2 + b*tan(e*x + d) + a)*tan(e*x + d)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int {\mathrm {tan}\left (d+e\,x\right )}^2\,\sqrt {c\,{\mathrm {tan}\left (d+e\,x\right )}^2+b\,\mathrm {tan}\left (d+e\,x\right )+a} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d + e*x)^2*(a + b*tan(d + e*x) + c*tan(d + e*x)^2)^(1/2),x)

[Out]

int(tan(d + e*x)^2*(a + b*tan(d + e*x) + c*tan(d + e*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \tan {\left (d + e x \right )} + c \tan ^{2}{\left (d + e x \right )}} \tan ^{2}{\left (d + e x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(e*x+d)+c*tan(e*x+d)**2)**(1/2)*tan(e*x+d)**2,x)

[Out]

Integral(sqrt(a + b*tan(d + e*x) + c*tan(d + e*x)**2)*tan(d + e*x)**2, x)

________________________________________________________________________________________